If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+36y=81
We move all terms to the left:
4y^2+36y-(81)=0
a = 4; b = 36; c = -81;
Δ = b2-4ac
Δ = 362-4·4·(-81)
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36\sqrt{2}}{2*4}=\frac{-36-36\sqrt{2}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36\sqrt{2}}{2*4}=\frac{-36+36\sqrt{2}}{8} $
| (29b-2)-7(4b+4)=-5 | | 8r–14=26 | | -27=3z-7z | | X+4x+(5x+25)=180 | | -2(u+8)=3u-21 | | -137+3x-9x=49 | | -3.8x=54.34 | | w-(w+9)=3/4(8w-2-) | | -8x-76+12x=68 | | -x=-1/9 | | 120/100=x/50 | | 5y+1=9 | | -8r–14=26 | | -196-3x-7x=54 | | -83-15x+10x=37 | | t+18=8 | | 52x=24 | | x2-64x+768=0 | | -83+15x+10x=37 | | y-1=3y-17=2y-9 | | 3(n+7)+2=6n-2+2n | | 5x-4=(7x+3)-7 | | -9x-247-10x=76 | | 20-d=10 | | 10p-2(3p-6)=4(3p=6)-8p | | 2x-18=3A | | 0.47x=35 | | 0.47x=45 | | -71+6x-11x=19 | | 3/15x=35 | | -4/3x=-6 | | 2x+3.5=-10 |